Меню

12 вольт солнечная батарея сделай сам

В то время как в Беларуси все больше и больше говорится об энергосбережении, субсидируемые тарифы на электроэнергию для населения далеки еще от уровня, при котором широкое использование альтернативной энергетики станет рентабельным. Солнечные модули и ветроустановки пока еще слишком дороги, чтобы получать с их помощью энергию для индивидуального потребления. Тем не менее альтернативная энергетика постепенно развивается и занимает свою нишу, позволяя экономить деньги.

В качестве примера можно привести недавно появившиеся на трассе Брест – Москва знаки, предупреждающие о пешеходном переходе. Они оборудованы светодиодной подсветкой, видной издалека. Над знаком установлен солнечный модуль, заряжающий в дневное время аккумулятор, который, в свою очередь, отдает энергию ночью.

Альтернативная энергетика выгодна там, где невозможно или очень дорого провести обыкновенную электролинию. В вышеописанном случае тянуть электричество к знаку перехода пришлось бы на многие километры, потратив при этом десятки миллионов рублей, в то время как солнечный модуль обошелся в несколько сотен долларов. Таких примеров можно привести множество: в южных странах уже появляются базовые станции сотовой связи на солнечных батареях, рекламные щиты с подсветкой и даже светодиодные фонари дорожного освещения.

Своими руками

У автора давно назрела необходимость в автономном источнике питания. Летом, выезжая на природу на пикник, хорошо иметь с собой прохладные напитки и свежие продукты. Для этих целей в свое время был куплен автохолодильник, который подключается к прикуривателю автомобиля. В дороге, когда вокруг жара, в холодильнике всегда прохладно, и продукты доезжают к пикнику свежими и охлажденными. Но дальше возникали проблемы: включенным в машине холодильник надолго не оставишь – потребляя энергию, как автомобильная фара, он быстро посадит аккумулятор. В общем, к середине жаркого дня от холода не оставалось и следа.

Солнечная батарея как нельзя лучше должна подойти для вышеописанного случая. Ведь выезды на пикники происходят обычно в солнечную погоду, и отдача от солнечной батареи должна быть максимальной. Вот так возникла идея с помощью солнца получать холод.

Готовые солнечные модули, к сожалению, все еще очень дороги. Судя по паспорту, автохолодильник потребляет 48 ватт, и нужный по мощности модуль будет стоить никак не меньше 300 долларов. Это в России. В Беларуси такая диковинка будет стоить еще больше. Дороговато для пикника.

Выход был найден на блоге одного американского умельца, который для своей экспериментальной установки самостоятельно собрал солнечную батарею из некондиционных модулей. Такие в бесчисленном множестве продаются на известном аукционе eBay с пометкой «DIY» (что расшифровывается как Do It Yourself, «сделай сам»). Для поиска предложений достаточно ввести словосочетание «solar cells». Обычно продаются плохо порезанные некондиционные модули с неровными кромками (sharpen edges). Качество модуля от этого сильно не страдает, и их вполне можно использовать для построения своей батареи.

Для сборки стандартной батареи мощностью 50 ватт обычно используют 36 модулей размером 3×6 дюймов с КПД 11%. Каждый модуль вырабатывает 0,5 вольт, ток – около 3 ампер. Соединяя модули последовательно, можно получить батарею мощностью около 50 ватт (напряжение при этом будет 18 вольт, а ток – до 3 ампер). Почему 18 вольт? Потому что это наилучшее напряжение для зарядки стандартных 12-вольтовых аккумуляторов. Ведь солнечная батарея обычно работает в связке с аккумулятором, который накапливает вырабатываемую энергию, позволяя расходовать ее, когда это нужно потребителю.

В нашем же случае мы можем обойтись и без аккумулятора, так как потреблять энергию мы будем днем, в солнечную погоду, непосредственно от солнечной батареи. Преобразователь на 12 вольт нам тоже не нужен, потому как автохолодильник не критичен к уровню напряжения и его стабильности. Более того, автохолодильник создаст такую нагрузку, что напряжение «просядет» до нормативных 12 вольт. Или даже ниже. Как показывают дальнейшие опыты, такие предположения оправданны.

Итак, необходимые 36 модулей были куплены на eBay с помощью банковской карты за 48,9 доллара (без торга, по «Buy It Now»). Доставка из США обошлась в 17,64 доллара. Хочу заметить, что за посылки стоимостью более 120 евро (включая стоимость доставки) придется платить таможенную пошлину. Поэтому не стоит заказывать много элементов сразу. При доставке выбирайте USPS – это почтовая служба США. Доставка экспресс-службами DHL, UPS и прочими будет стоить дороже, к тому же придется платить пошлину.

Посылка пришла на удивление быстро. Меньше чем за две недели. Модули, несмотря на их хрупкость, оказались целыми – видимо, благодаря хорошей упаковке. Более того, продавец положил два запасных, на всякий… Забегая вперед, скажу, что они оказались не лишними. Модули действительно очень хрупкие. Достаточно неаккуратно нажать пальцем, и модуль разлетается на мелкие осколки, как кусочек слюды. В итоге два модуля по неосторожности расколол при монтаже.

Сначала на ровном столе спаял 4 цепочки по 9 модулей. Затем начал их монтировать. На заводах солнечные модули монтируют твердую поверхность, закрывая сверху специальным каленым стеклом. В дождь с градом панель использовать не собираюсь, поэтому из подручных материалов подойдет и оргстекло. В качестве подложки использовал обыкновенную фанеру. Вырезав куски 66 на 77 см, с помощью строительного скотча прикрепил все 4 цепочки модулей к оргстеклу. Далее спаял все 4 цепочки между собой, прикрепил колодку с винтиками, выведя туда провода.

По краям оргстекла был проложен вспененный двухсторонний двухмиллиметровый скотч. То же самое было сделано и в промежутках между цепочками. Сверху накрыл все фанерой. Получился такой «пирог»: фанера, воздух, модули, оргстекло. Толстый скотч не дает соприкасаться фанере и оргстеклу, сохраняя пространство для хрупких модулей. Ведь их очень легко раздавить.

Вот что получилось:

В следующие же выходные выехали на Вилейку на тестирование. День был не самый удачный. По России гудели пожары, а у нас была легкая дымка, изредка скрывающая солнце пеленой так, что на него можно было смотреть. Тем не менее батарея показала неплохие результаты.

Для тестирования в качестве нагрузки был использован холодильник, потребляющий автомобильные 12 вольт, 4 ампера. Замерялось напряжение, выдаваемое батареей при подключенном холодильнике, и его потребляемый ток:

Ясная солнечная погода 10 вольт, 3 ампера
Легкая дымка 8 вольт, 2,2-2,7 ампер
Солнце за тучей (теней уже не видно) 5 вольт, 1 ампер

Как видно, мощность батареи не достигла заявленных идеальных 50 ватт. Этого и стоило ожидать. Все-таки у нас не Сахара, солнце не такое сильное. Также стоит учесть некондиционность модулей и покрытие из примитивного оргстекла.

Однако даже когда скрывалось солнце и тень сливалась с окружающим фоном, холодильник продолжал работать, выдавая холод. Все продукты оставались холодными целый день. Цель достигнута!

Если у вас частный дом

…то об альтернативных источниках энергии можно задуматься уже сейчас.

Первое, с чего нужно начать, – это меры по энергосбережению. Экономичные лампочки, утепление стен, хорошие стеклопакеты, вентиляция с рекуперацией тепла. Неразумно обвешивать дом дорогими солнечными батареями, для того чтобы «раскочегарить» старую «лампочку Ильича» с КПД 5%.

Солнце — неисчерпаемый источник энергии. Именно она летом «обогревает» нашу половину земного шарика, принося гигантское количество энергии. Считается, что в солнечный день на один квадратный метр поверхности попадает более 1000 ватт солнечной энергии. Если всю ее суметь преобразовать, то за пару минут можно вскипятить литр воды (сравните, мощность одного чайника обычно составляет 2000 ватт).

На практике КПД распространенных солнечных элементов составляет около 20%. То есть с 1 квадратного метра батареи вы получите около 200 ватт электрической энергии. Возьмите среднюю стоимость батареи такой площади, умножьте на количество нужных вам ватт. Добавьте сюда хитрую электронику (стоимостью в тысячи долларов), которая позволяет накапливать энергию либо отдавать излишки во внешнюю сеть… Сделайте поправку на количество ясных дней в Беларуси (их около 30-40 в год). И поймете, что сэкономить на электричестве, используя солнечные батареи, вам не удастся. Разве что питать «халявной» энергией некритичные источники: светодиодные светильники на лужайке в саду.

Для отопления дома и подогрева горячей воды есть другие, более эффективные способы. Солнечные коллекторы. Их все больше и больше устанавливают в Европе. КПД вакуумных солнечных коллекторов (а именно такие лучше всего использовать в наших условиях) достигает 80%. По свидетельству пользователей, в минских условиях, в летнее время и в межсезонье, в частных домах удается забыть о подогреве горячей воды с помощью традиционных видов топлива. Принцип работы вакуумного коллектора заключается в том, что солнце через прозрачную колбу с разреженным воздухом нагревает трубку с жидкостью-теплоносителем. Поскольку трубка с горячей жидкостью отделена от окружающей среды, потерь тепла не происходит. Такие коллекторы могут работать даже в солнечный зимний день.

Солнечные перспективы

Для того чтобы оценить перспективы развития солнечной энергетики в Беларуси, необходимо ответить на следующие вопросы:

1. Какую нишу может занять солнечная энергетика?
2. Каковы перспективы развития солнечных технологий?

Как было показано выше, уже сейчас имеет смысл использовать солнечные батареи в местах, удаленных от линий электропередач и не критичных к постоянному наличию электроэнергии. Со временем солнце может занять свою нишу и в большой энергетике. На данный момент основными генерирующими мощностями в Беларуси являются ТЭЦ и ГРЭС. И если КПД ТЭЦ, благодаря когенерации тепловой энергии, достигает 80-90%, то КПД ГРЭС не превышает 40%. ТЭЦ являются основными источниками энергии в отопительный период, ГРЭС – летом. Также стоит отметить, что потребление энергии днем в 2 раза превышает потребление ночью. Получается, что дороже всего электроэнергия обходится нам летним днем, то есть в период максимальной выработки энергии солнечными батареями. Вопрос, как всегда, в цене.

В последнее время солнечные технологии переживают бурное развитие. Достаточно сказать, что максимально достижимый КПД солнечных элементов за последние 10 лет увеличился с 32 до 42%. Объемы производства растут на 60-100% каждый год. Даже в кризисный 2009 год, когда цена нефти упала до 30$ за баррель, рынок солнечных элементов вырос на 25%. Также постоянно снижается и их себестоимость. Появляются новые дешевые способы производства солнечных батарей. При средней стоимости солнечных модулей 4$ за ватт установленной мощности в США уже продаются тонкопленочные модули с ценой 1$/Вт. Причем уже достигнута себестоимость производства 0,3$/Вт. Средняя себестоимость киловатт-часа солнечной энергии в США сегодня составляет 19 центов и снизилась более чем на 10% за последние два года. Для сравнения: на сегодняшний день субсидируемый тариф на электричество для населения в Беларуси равен 125 рублям, или 4 центам.

Вместе с тем тариф для нужд отопления и горячего водоснабжения с присоединенной мощностью оборудования более 5 кВт равен 865 рублям, или 29 центам. В условиях Беларуси при себестоимости 0,3$/Вт стоимость солнечного аналога проектируемой АЭС составит $4-7 млрд при сравнимом сроке эксплуатации и практически нулевых эксплуатационных затратах. На практике заменить АЭС на СЭС, конечно же, не получится ввиду непостоянства выработки энергии на СЭС.

Таким образом, достигнутый уровень развития солнечных технологий и его динамика позволяют сделать вывод о том, что солнечная энергетика рано или поздно появится и в Беларуси. На данном этапе в Беларуси целесообразно принять закон об альтернативной энергетике, который бы стимулировал развитие этого направления. Также необходим пересмотр технических стандартов электросетей и оборудования с тем, чтобы предоставить возможность отдачи выработанной локально, с помощью солнечных батарей, энергии в общую сеть.

Читайте также:  Станок ручной для гибки арматуры сделать самому

Другие источники

Первое, что приходит на ум после солнечных установок, – это использование ветра. К сожалению, ветряки – очень дорогое удовольствие. И установишь их не на каждом подворье. Более перспективной для обогрева дома зимой представляется… геотермальная энергия. Да-да, в Беларуси, где нет вулканов и подземных озер с кипятком.

Появился целый класс установок, называемых тепловыми насосами. Тепловой насос позволяет «выкачивать» из земли тепловую энергию и пустить ее на обогрев дома. Внешний контур насоса закладывается в землю, на уровень, где почва всегда остается положительной температуры. Внутренний контур обогревает дом. Для описания принципа работы теплового насоса часто приводят аналогии «холодильника наоборот». Выкачивая малые доли тепла из-под земли, насос нагревает внутренний контур отопления до температуры около 30 градусов Цельсия.

Стоимость тепловых насосов для частных домов на текущий момент упала ниже десяти тысяч евро, что в свете повышения цен на топливо представляется рентабельным. Многие продавцы заявляют о 200-300% КПД таких установок. Потребляя из сети около 3 киловатт энергии, установка дает тепла в 2-3 раза больше. К сожалению, в Беларуси есть проблемы с установкой таких устройств. Энергетики считают, что дом отапливается электричеством, и повышают цены на потребляемую электроэнергию в разы. Кроме того, высокие таможенные пошлины на ввоз таких установок не имеют ничего общего с попытками Беларуси стать энергонезависимым государством.

источник

Долгое время уделом солнечных батарей были либо громоздкие панели спутников и космических станций, либо маломощные фотоэлементы карманных калькуляторов. Это было связано с примитивностью первых монокристаллических кремниевых фотоэлементов: они имели не только низкий КПД (не более 25% в теории, на практике – около 7%), но и заметно теряли эффективность при отклонении угла падения света от 90˚. Учитывая, что в Европе в облачную погоду удельная мощность солнечного излучения может падать ниже 100 Вт/м 2 , для получения сколько-нибудь значительной мощности требовались слишком большие площади солнечных батарей. Поэтому первые солнечные электростанции строились только в условиях максимальной мощности светового потока и ясной погоды, то есть в пустынях вблизи экватора.

Значительный прорыв в создании фотоэлементов вернул интерес к солнечной энергетике: так, наиболее дешевые и доступные поликристаллические кремниевые элементы, хотя и имеют меньший КПД, чем у монокристаллических, но зато и менее чувствительны к условиям работы. Солнечная панель на основе поликристаллических пластин выдаст достаточно стабильное напряжение при переменной облачности. Более современные фотоэлементы на основе арсенида галлия имеют КПД до 40%, но слишком дороги для изготовления солнечной батареи своими руками.

На видео идет рассказ об идее постройки солнечной батареи и ее реализации

С этой целью выпускаются и продаются готовые компактные панели, выполненные в виде быстро сворачиваемых сборок на основе из синтетической ткани. В средней полосе России такая панель размером около 30х40 см сможет обеспечить мощность в пределах 5 Вт при напряжении 12 В.

Более крупная батарея сможет обеспечить до 100 Вт электрической мощности. Казалось бы, это не так много, но стоит вспомнить принцип работы небольших ветряных электростанций: в них вся нагрузка запитывается через импульсный преобразователь от батареи аккумуляторов, которые заряжаются от маломощного ветряка. Таким образом становится возможным использование более мощных потребителей.

Использование аналогичного принципа при постройке домашней солнечной электростанции делает ее более выгодной по сравнению с ветряком: летом солнце светит большую часть дня, в отличие от непостоянного и часто отсутствующего ветра. По этой причине аккумуляторы смогут набирать заряд днем гораздо быстрее, а сама солнечная панель гораздо проще в установке, чем требующий высокой мачты ветряной генератор.

Есть свой смысл и в использовании солнечной батареи исключительно как источника аварийного питания. Например, если в частном доме установлен газовый котел отопления с циркуляционными насосами, при отключении электропитания можно через импульсный преобразователь (инвертор) запитать их от аккумуляторов, которые поддерживаются заряженными от солнечной батареи, сохраняя систему отопления работоспособной.

Телевизионный сюжет на эту тему

Основа панели – это сборка фотоэлементов. Так как для получения достаточной мощности нам потребуется достаточно большое их количество, стоит рассмотреть наиболее дешевые источники, в роли которых традиционно выступают Ebay и Aliexpress. Нужный товар ищется по запросу “solar cell”.

В среднем готовая тонкопленочная сборка под напряжение 12 В и ток 100 мА стоит в Китае около 200-300 рублей, ее размеры составят около 85×115 мм. Можно встретить также как меньшие сборки (на 5, 6 вольт), так и отдельные фотоэлементы (их рабочее напряжение – 0,5 В). В любом случае их придется комбинировать, чтобы получить нужное напряжение и мощность. Для этого будет необходимо скомбинировать последовательное и параллельное подключение фотоэлементов.

  • Соединяя фотоэлементы последовательно, мы не изменяем максимальный ток, который может отдать сборка, но увеличиваем напряжение на ее выходах: к примеру, сборка из 6 поликристаллических фотоэлементов (напомним, рабочее напряжение каждого – 0,5 В) будет выдавать 3 В.
  • Соединяя фотоэлементы параллельно, мы увеличиваем токоотдачу сборки, сохраняя ее рабочее напряжение. При этом важно, чтобы каждая секция имела одинаковое количество элементов.

На приведенном выше рисунке отображен принцип соединения фотоэлементов. Каждый из них имеет напряжение в 0,5В; сборка из двух фотоэлементов SB2 и SB3 выдает нам 1В, сборка из трех – 1,5В, параллельное подключение второй секции не изменяет напряжение.

Также по схеме видно, что каждая из параллельно соединенных секций подключена к нагрузке через диод. Это необходимо для того, чтобы избежать потери тока через менее освещенные секции (например, половину батареи закрыла тень), а также не дать аккумуляторам разряжаться ночью. Для обеспечения максимального КПД нам понадобятся диоды с минимальным прямым падением напряжения (так называемые диоды Шоттки). Их нужно подбирать с учетом полуторакратного запаса по обратному напряжению и току.

ПРИМЕР: Мы используем секции с напряжением 12 В и током 100 мА. Значит, каждый диод должен иметь обратное напряжение не менее 18 В и ток не менее 150 мА. По каталогам можно подобрать подходящие диоды: в нашем случае самый дешевый и удобный вариант – это 1N5817 стоимостью около 500 р. за упаковку из 100 штук на том же Aliexpress.

При выборе фотоэлементов предпочтите уже имеющие готовые площадки для пайки, сборка панели в этом случае будет гораздо проще. Также можно увидеть в продаже солнечные батареи без площадок для пайки: их нужно собирать с использованием токопроводящих шин из медной фольги, это менее удобный способ.

Итак, определившись с типом используемых элементов, можно приступить к расчету конструкции панели. Например, мы выбрали сборку из одиночных (0,5В) фотоэлементов с номинальным током 100 мА, рассчитывая на зарядку аккумулятора 12В током до 6 А. Следовательно, нам понадобится 6/0,1=60 секций по 12/0,5=24 фотоэлемента, итого 1440 фотоэлементов. Также потребуется 60 барьерных диодов.

Сами фотоэлементы необходимо будет разместить под прозрачным листом, который будет защищать их от механических повреждений. Лучше использовать толстое (3-4 мм) минеральное стекло, а не органическое, так как, несмотря на большую массу и стоимость, оно не мутнеет и не царапается.

Размеры стеклянной панели рассчитываются из размеров и расположения секций. В нашем примере, применяя элементы размером 53х18 мм, мы получим размеры секции в 212х108 мм, если расположим их в порядке 4×6:

60 таких секций разумнее всего расположить в порядке 5х12, таким образом общие размеры панели составят 1060х1296 мм. При этом нужно учесть припуск на бортики панели в зависимости от их конструкции.

На видео показан процесс постройки с комментариями

Секции укладываются на стекло подложкой кверху и спаиваются между собой и диодами согласно выбранной схеме последовательно-параллельного подключения. Для фиксации фотоэлементов на месте, а также закрепления проводников и диодов можно использовать прозрачный термоклей или бескислотный уксусный герметик.

Не используйте кислотные (легко отличимые по уксусному запаху) герметики – их использование в закрытом объеме приведет к быстрой коррозии пайки!

После того, как все фотоэлементы размещены, закреплены и спаяны, к выводам припаивается более толстый силовой провод – в нашем случае будет достаточно сечения 1,5 мм 2 . Он пропускается через отверстие в рамке, которую проще всего сделать из пропитанной олифой деревянной рейки. Метод закрепления стекла в рамке может быть различным:

  • Укладка в паз с последующим закреплением штапиком (наподобие тому, как это делается в оконных рамах);
  • Размещение между двумя рамками с последующей их стяжкой саморезами;

В любом случае, учитывая склонность дерева «дышать», нужно применять при укладе стекла незатвердевающий герметик.

Вместо дерева можно использовать более совершенные материалы при их доступности: алюминиевый уголок, металлопрофиль, использующийся при изготовлении стеклопакетов и так далее.

Стыки конструкции рамки, а также место вывода проводов необходимо дополнительно залить герметиком. После вторичной проверки всех соединений залейте фотоэлементы прозрачным лаком, чтобы полностью загерметизировать и скрепить сборку. После высыхания лака к рамке можно прикрепить заднюю стенку из любого подходящего материала, желательно из полимера наподобие поликарбоната. Пространство между стенкой и залитыми фотоэлементами лучше всего залить доступным компаундом, например – эпоксидной смолой.

Крепить получившуюся батарею, учитывая ее достаточно большую массу, необходимо как минимум в четырех углах рамки. Лучший способ усиления конструкции – собрать вторую рамку из стального уголка таким образом, чтобы солнечная панель достаточно плотно встала в нее, а затем саморезами скрепить их по периметру. Такую конструкцию можно спокойно будет размещать на крыше, стене или наклонной стойке в зависимости от того, как Вы планируете использовать солнечную батарею.

Наиболее оптимальный вариант стационарного размещения батареи – горизонтальный или с небольшим уклоном для стока осадков. В этом случае «электростанция» будет иметь максимальный КПД в полдень, когда влияние погоды и посторонних помех на мощность падающего солнечного излучения минимально. Максимальную токоотдачу в течение длительного времени можно обеспечить, предусмотрев возможность наклона панели вдоль хода солнца хотя бы вручную.

Важной особенностью солнечной батареи является сильная зависимость ее выходного напряжения и максимального тока от освещенности. Сделав своими руками батарею с расчетным напряжением в 12В, можно будет обнаружить, что ее реальное напряжение будет колебаться от 9В при слабом и косо падающем свете до 18-19В при ярком прямом освещении. Напрямую подключать солнечную батарею к аккумулятору нельзя – это может привести к перезаряду и выкипанию электролита, если используется свинцово-кислотный аккумулятор. Для герметичных гелевых аккумуляторов перезаряд еще более страшен и приводит к необратимому повреждению.

Во избежание перезаряда аккумуляторных батарей используются специальные контроллеры заряда. Наиболее простые схемы просто отключают аккумулятор по мере набора заряда, а сама зарядка идет лишь тогда, когда напряжение на солнечной батарее выше, чем на аккумуляторе (так называемая схема On-Off). По соображениям безопасности отключение зарядки происходит заведомо раньше полного набора емкости, в среднем на 70 процентах. Более совершенные зарядные устройства на основе ШИМ (широтно-импульсной модуляции, также PWM от Pulse Width Modulation) поддерживают заряд аккумулятора практически на 100%, переходя по мере набора емкости в импульсный режим. Самые сложные и дорогие контроллеры MPPT (Maximum Power Point Tracking, отслеживание точки максимальной мощности) также отслеживают и состояние самой батареи, включая ее температуру, для обеспечения максимального КПД.

Читайте также:  Сделай сам своими руками для дачи и огорода фото

Китайские контроллеры заряда производства фирм наподобие EP Solar обойдутся недорого по сравнению с самой солнечной батареей: блок 12В/5А стоит около 1100 р., более мощные и совершенные американские блоки Morningstar имеют цену от 8 тысяч рублей.

Но подобное устройство можно собрать и самостоятельно при наличии соответствующих навыков в радиоэлектронике. Ниже приведена простая схема повышающего контроллера, способного обеспечивать заряд аккумулятора от шестивольтовой солнечной батареи:

Для подстройки максимального напряжения на выходе служит подстроечный резистор R2.

Для солнечных батарей, рассчитанных на 12В, можно использовать следующую схему:

Здесь MainLoad– разъем для подключения аккумулятора, AuxLoad– для дополнительной нагрузки, требующей ограничения напряжения (например, зарядное устройство телефона). Достоинство этой схемы – возможность ее использования с различными типами аккумуляторов, определяемыми положением переключателя:

  • 1.Обслуживаемый свинцово-кислотный аккумулятор
  • 2.Необслуживаемый аккумулятор
  • 3.Батарея литиевых аккумуляторов (3 аккумулятора по 4,1 В)

В первую очередь – благодаря дешевизне производимых в Китае поликристаллических кремниевых фотоэлементов, которые позволяют собирать достаточно бюджетные конструкции. В зависимости от потребностей и возможностей солнечная батарея может быть изготовлена с разнообразными характеристиками – от компактной складной конструкции для зарядки телефона или навигатора до крупногабаритных панелей, работающих в системах резервного питания совместно с аккумуляторными батареями и инверторными преобразователями.

источник

В то время как в Беларуси все больше и больше говорится об энергосбережении, субсидируемые тарифы на электроэнергию для населения далеки еще от уровня, при котором широкое использование альтернативной энергетики станет рентабельным. Солнечные модули и ветроустановки пока еще слишком дороги, чтобы получать с их помощью энергию для индивидуального потребления. Тем не менее альтернативная энергетика постепенно развивается и занимает свою нишу, позволяя экономить деньги.

В качестве примера можно привести недавно появившиеся на трассе «Брест – Москва» знаки, предупреждающие о пешеходном переходе. Они оборудованы светодиодной подсветкой, видной издалека. Над знаком установлен солнечный модуль, заряжающий в дневное время аккумулятор, который, в свою очередь, отдает энергию ночью.

Альтернативная энергетика выгодна там, где невозможно или очень дорого провести обыкновенную электролинию. В вышеописанном случае тянуть электричество к знаку перехода пришлось бы на многие километры, потратив при этом десятки миллионов рублей, в то время как солнечный модуль обошелся в несколько сотен долларов. Таких примеров можно привести множество: в южных странах уже появляются базовые станции сотовой связи на солнечных батареях, рекламные щиты с подсветкой и даже светодиодные фонари дорожного освещения.

Своими руками

У автора давно назрела необходимость в автономном источнике питания. Летом, выезжая на природу на пикник, хорошо иметь с собой прохладные напитки и свежие продукты. Для этих целей в свое время был куплен автохолодильник, который подключается к прикуривателю автомобиля. В дороге, когда вокруг жара, в холодильнике всегда прохладно, и продукты доезжают к пикнику свежими и охлажденными. Но дальше возникали проблемы: включенным в машине холодильник надолго не оставишь – потребляя энергию, как автомобильная фара, он быстро посадит аккумулятор. В общем, к середине жаркого дня от холода не оставалось и следа.

Солнечная батарея как нельзя лучше должна подойти для вышеописанного случая. Ведь выезды на пикники происходят обычно в солнечную погоду, и отдача от солнечной батареи должна быть максимальной. Вот так возникла идея с помощью солнца получать холод.
Готовые солнечные модули, к сожалению, все еще очень дороги. Судя по паспорту, автохолодильник потребляет 48 ватт, и нужный по мощности модуль будет стоить никак не меньше 300 долларов. Это в России. В Беларуси такая диковинка будет стоить еще больше. Дороговато для пикника.

Выход был найден на блоге одного американского умельца, который для своей экспериментальной установки самостоятельно собрал солнечную батарею из некондиционных модулей. Такие в бесчисленном множестве продаются на известном аукционе eBay с пометкой «DIY» (что расшифровывается как Do It Yourself, «сделай сам»). Для поиска предложений достаточно ввести словосочетание «solar cells». Обычно продаются плохо порезанные некондиционные модули с неровными кромками (sharpen edges). Качество модуля от этого сильно не страдает, и их вполне можно использовать для построения своей батареи.

Для сборки стандартной батареи мощностью 50 ватт обычно используют 36 модулей размером 3×6 дюймов с КПД 11%. Каждый модуль вырабатывает 0,5 вольт, ток – около 3 ампер. Соединяя модули последовательно, можно получить батарею мощностью около 50 ватт (напряжение при этом будет 18 вольт, а ток – до 3 ампер). Почему 18 вольт? Потому что это наилучшее напряжение для зарядки стандартных 12-вольтовых аккумуляторов. Ведь солнечная батарея обычно работает в связке с аккумулятором, который накапливает вырабатываемую энергию, позволяя расходовать ее, когда это нужно потребителю.

В нашем же случае мы можем обойтись и без аккумулятора, так как потреблять энергию мы будем днем, в солнечную погоду, непосредственно от солнечной батареи. Преобразователь на 12 вольт нам тоже не нужен, потому как автохолодильник не критичен к уровню напряжения и его стабильности. Более того, автохолодильник создаст такую нагрузку, что напряжение «просядет» до нормативных 12 вольт. Или даже ниже. Как показывают дальнейшие опыты, такие предположения оправданны.

Итак, необходимые 36 модулей были куплены на eBay с помощью банковской карты за 48,9 доллара (без торга, по «Buy It Now»). Доставка из США обошлась в 17,64 доллара. Хочу заметить, что за посылки стоимостью более 120 евро (включая стоимость доставки) придется платить таможенную пошлину. Поэтому не стоит заказывать много элементов сразу. При доставке выбирайте USPS – это почтовая служба США. Доставка экспресс-службами DHL, UPS и прочими будет стоить дороже, к тому же придется платить пошлину.

Посылка пришла на удивление быстро. Меньше чем за две недели. Модули, несмотря на их хрупкость, оказались целыми – видимо, благодаря хорошей упаковке. Более того, продавец положил два запасных, на всякий… Забегая вперед, скажу, что они оказались не лишними. Модули действительно очень хрупкие. Достаточно неаккуратно нажать пальцем, и модуль разлетается на мелкие осколки, как кусочек слюды. В итоге два модуля по неосторожности расколол при монтаже.

Сначала на ровном столе спаял 4 цепочки по 9 модулей. Затем начал их монтировать. На заводах солнечные модули монтируют на твердую поверхность, закрывая сверху специальным каленым стеклом. В дождь с градом панель использовать не собираюсь, поэтому из подручных материалов подойдет и оргстекло. В качестве подложки использовал обыкновенную фанеру. Вырезав куски 66 на 77 см, с помощью строительного скотча прикрепил все 4 цепочки модулей к оргстеклу. Далее спаял все 4 цепочки между собой, прикрепил колодку с винтиками, выведя туда провода.

По краям оргстекла был проложен вспененный двухсторонний двухмиллиметровый скотч. То же самое было сделано и в промежутках между цепочками. Сверху накрыл все фанерой. Получился такой «пирог»: фанера, воздух, модули, оргстекло. Толстый скотч не дает соприкасаться фанере и оргстеклу, сохраняя пространство для хрупких модулей. Ведь их очень легко раздавить.

В следующие же выходные выехали на Вилейку на тестирование. День был не самый удачный. По России гудели пожары, а у нас была легкая дымка, изредка скрывающая солнце пеленой так, что на него можно было смотреть. Тем не менее батарея показала неплохие результаты.

Для тестирования в качестве нагрузки был использован холодильник, потребляющий автомобильные 12 вольт, 4 ампера. Замерялось напряжение, выдаваемое батареей при подключенном холодильнике, и его потребляемый ток:

Ясная солнечная погода 10 вольт, 3 ампера
Легкая дымка 8 вольт, 2,2-2,7 ампер
Солнце за тучей (теней уже не видно) 5 вольт, 1 ампер

Как видно, мощность батареи не достигла заявленных идеальных 50 ватт. Этого и стоило ожидать. Все-таки у нас не Сахара, солнце не такое сильное. Также стоит учесть некондиционность модулей и покрытие из примитивного оргстекла.

Однако даже когда скрывалось солнце и тень сливалась с окружающим фоном, холодильник продолжал работать, выдавая холод. Все продукты оставались холодными целый день. Цель достигнута!

Если у вас частный дом

…то об альтернативных источниках энергии можно задуматься уже сейчас.

Первое, с чего нужно начать, – это меры по энергосбережению. Экономичные лампочки, утепление стен, хорошие стеклопакеты, вентиляция с рекуперацией тепла. Неразумно обвешивать дом дорогими солнечными батареями, для того чтобы «раскочегарить» старую «лампочку Ильича» с КПД 5%.

Солнце – неисчерпаемый источник энергии. Именно она летом «обогревает» нашу половину земного шарика, принося гигантское количество энергии. Считается, что в солнечный день на один квадратный метр поверхности попадает более 1000 ватт солнечной энергии. Если всю ее суметь преобразовать, то за пару минут можно вскипятить литр воды (сравните, мощность одного чайника обычно составляет 2000 ватт).

На практике КПД распространенных солнечных элементов составляет около 20%. То есть с 1 квадратного метра батареи вы получите около 200 ватт электрической энергии. Возьмите среднюю стоимость батареи такой площади, умножьте на количество нужных вам ватт. Добавьте сюда хитрую электронику (стоимостью в тысячи долларов), которая позволяет накапливать энергию либо отдавать излишки во внешнюю сеть… Сделайте поправку на количество ясных дней в Беларуси (их около 30-40 в год). И поймете, что сэкономить на электричестве, используя солнечные батареи, вам не удастся. Разве что питать «халявной» энергией некритичные источники: светодиодные светильники на лужайке в саду.

Для отопления дома и подогрева горячей воды есть другие, более эффективные способы. Солнечные коллекторы. Их все больше и больше устанавливают в Европе. КПД вакуумных солнечных коллекторов (а именно такие лучше всего использовать в наших условиях) достигает 80%. По свидетельству пользователей, в минских условиях, в летнее время и в межсезонье, в частных домах удается забыть о подогреве горячей воды с помощью традиционных видов топлива. Принцип работы вакуумного коллектора заключается в том, что солнце через прозрачную колбу с разреженным воздухом нагревает трубку с жидкостью-теплоносителем. Поскольку трубка с горячей жидкостью отделена от окружающей среды, потерь тепла не происходит. Такие коллекторы могут работать даже в солнечный зимний день.

Солнечные перспективы

Для того чтобы оценить перспективы развития солнечной энергетики в Беларуси, необходимо ответить на следующие вопросы:

1. Какую нишу может занять солнечная энергетика?
2. Каковы перспективы развития солнечных технологий?

Как было показано выше, уже сейчас имеет смысл использовать солнечные батареи в местах, удаленных от линий электропередач и не критичных к постоянному наличию электроэнергии. Со временем солнце может занять свою нишу и в большой энергетике. На данный момент основными генерирующими мощностями в Беларуси являются ТЭЦ и ГРЭС. И если КПД ТЭЦ, благодаря когенерации тепловой энергии, достигает 80-90%, то КПД ГРЭС не превышает 40%. ТЭЦ являются основными источниками энергии в отопительный период, ГРЭС – летом. Также стоит отметить, что потребление энергии днем в 2 раза превышает потребление ночью. Получается, что дороже всего электроэнергия обходится нам летним днем, то есть в период максимальной выработки энергии солнечными батареями. Вопрос, как всегда, в цене.

В последнее время солнечные технологии переживают бурное развитие. Достаточно сказать, что максимально достижимый КПД солнечных элементов за последние 10 лет увеличился с 32 до 42%. Объемы производства растут на 60-100% каждый год. Даже в кризисный 2009 год, когда цена нефти упала до 30$ за баррель, рынок солнечных элементов вырос на 25%. Также постоянно снижается и их себестоимость. Появляются новые дешевые способы производства солнечных батарей. При средней стоимости солнечных модулей 4$ за ватт установленной мощности в США уже продаются тонкопленочные модули с ценой 1$/Вт. Причем уже достигнута себестоимость производства 0,3$/Вт. Средняя себестоимость киловатт-часа солнечной энергии в США сегодня составляет 19 центов и снизилась более чем на 10% за последние два года. Для сравнения: на сегодняшний день субсидируемый тариф на электричество для населения в Беларуси равен 125 рублям, или 4 центам.

Читайте также:  Как сделать волосы длинными в домашних условиях для мужчин

Вместе с тем тариф для нужд отопления и горячего водоснабжения с присоединенной мощностью оборудования более 5 кВт равен 865 рублям, или 29 центам. В условиях Беларуси при себестоимости 0,3$/Вт стоимость солнечного аналога проектируемой АЭС составит $4-7 млрд при сравнимом сроке эксплуатации и практически нулевых эксплуатационных затратах. На практике заменить АЭС на СЭС, конечно же, не получится ввиду непостоянства выработки энергии на СЭС.

Таким образом, достигнутый уровень развития солнечных технологий и его динамика позволяют сделать вывод о том, что солнечная энергетика рано или поздно появится и в Беларуси. На данном этапе в Беларуси целесообразно принять закон об альтернативной энергетике, который бы стимулировал развитие этого направления. Также необходим пересмотр технических стандартов электросетей и оборудования с тем, чтобы предоставить возможность отдачи выработанной локально, с помощью солнечных батарей, энергии в общую сеть.

Другие источники

Первое, что приходит на ум после солнечных установок, – это использование ветра. К сожалению, ветряки – очень дорогое удовольствие. И установишь их не на каждом подворье. Более перспективной для обогрева дома зимой представляется… геотермальная энергия. Да-да, в Беларуси, где нет вулканов и подземных озер с кипятком.

Появился целый класс установок, называемых тепловыми насосами. Тепловой насос позволяет «выкачивать» из земли тепловую энергию и пустить ее на обогрев дома. Внешний контур насоса закладывается в землю, на уровень, где почва всегда остается положительной температуры. Внутренний контур обогревает дом. Для описания принципа работы теплового насоса часто приводят аналогии «холодильника наоборот». Выкачивая малые доли тепла из-под земли, насос нагревает внутренний контур отопления до температуры около 30 градусов Цельсия.

Стоимость тепловых насосов для частных домов на текущий момент упала ниже десяти тысяч евро, что в свете повышения цен на топливо представляется рентабельным. Многие продавцы заявляют о 200-300% КПД таких установок. Потребляя из сети около 3 киловатт энергии, установка дает тепла в 2-3 раза больше. К сожалению, в Беларуси есть проблемы с установкой таких устройств. Энергетики считают, что дом отапливается электричеством, и повышают цены на потребляемую электроэнергию в разы. Кроме того, высокие таможенные пошлины на ввоз таких установок не имеют ничего общего с попытками Беларуси стать энергонезависимым государством.

Сергей Коростель, Александр Лукьянчик

источник

Все началось с того, что один знакомый, который в молодости был радиолюбителем, мне согласился за символическую цену отдать чемодан с радиодеталями времен Советского Союза. Чемнодан был настоящей наxодкой и когда открыл его, увидел совсем новые стеклодиоды и мощные железные диоды серии кд2010 и кд203. Уверен многие знают, что если осветить полупроводниковый кристалл солнцем, то он способен отдать до 0,7 вольт напряжения. Если кто не в курсе о чем говорю, советую читать статью о зарядке мобильного телефона самодельной диодной солнечной панелью. Итак, после небольшего расчета оказалось, что имеющихся диодов более чем достаточно для реализации моей идеи. Один кристалл из диода кд2010 способен дать до 0,7 вольт напряжения, а сила тока одного кристалла может достигать 7 миллиампер (для сравнения скажу, что номинальный ток потребления белого светодиода составляет 20 миллиампер).

В общем от диодной солнечной панели я желал получить номинальное напряжение при нормальном солнечном освещении 9 вольт, напряжение при облачной погоде не менее 6 вольт, а при ярком солнечном освещении планировалось получить до 14-16 вольт напряжения, про силу тока поговорим потом. Итак, поскольку пиковое значение напряжение в 0,7 вольт мои кристаллы отдавали очень редко (в течении 3-х дней испытании на солнце мультиметр только один раз показал такое значение от одного кристалла), то решил для удобства проведения расчетов использовать расчетную величину тока одного кристалла 0,5 вольт. Для получения 12 вольт напряжения нужно последовательно соединить 24 кристалла полупроводниковых диодов. Теперь поясню, как достать кристалл из диода. Берем сам диод и при помощи молотка разбиваем стеклянный держатель верxнего контакта диода. Затем при помощи плоскогубцев нужно открыть диод. Там мы увидим кристалл, который припаян к основании диода. К кристаллу припаян медный многожильный провод на конце которого прикреплен верxний контакт диода. Берем нижнее основание диода на который припаян кристалл и идем к газовой плите. Держим его при помощи плоскогубцев на огне (так, что полупроводниковый кристалл наxодился сверxу). Через пол-минуты олово кристалла расплавится и уже можно спокойно взять его при помощи пинцета. Так нужно делать со всеми диодами. У меня на это ушло пару дней. Работа действительно трудная, но дело стоит того. Как уже было сказано, каждый полупроводный кристалл способен отдавать до 7 миллиампер тока на ярком солнце. Для удобства расчета использовал значение силы тока одного кристалла 5 миллиампер. То есть, если параллельно соединить 32 кристалла мы получим силу тока 160 миллиампер, почему именно 160 миллиампер? Просто у меня диодов xватило как раз только для получения такого тока. Нужно подключить 24 диода последовательно для получения 12 вольт напряжения и собрать 32 блока по 12 вольт и включить параллельно для получения желаемой емкости. В итоге когда панель была готова (после почти недели работ) я почему то получил иные параметры которые меня очень обрадовали. Максимальное напряжение при ярком солнечном освещении до 18 вольт, а сила тока достигала 200 миллиампер, иногда до 220 миллиампер.

Для корпуса панели были использованы два каркаса от советского стабилизатора напряжения. На стабилизаторе есть отверстия для вентиляции и именно в ниx были поставлены полупроводные кристаллы.

Поскольку солнечный свет не всегда будет освещать нашу панель, то было решено зарезервировать напряжение от панели в аккумулятораx. Аккумуляторы были использованы от китайскиx фонариков. Каждый аккумулятор имеет следующие параметры: напряжение 4 вольт, емкость до 1500 миллиампер.

То есть наша панель за сутки успеет зарядить такой аккумулятор, точнее три такиx аккумулятора, поскольку аккумуляторы были включены последовательно для получения 12 вольт напряжения, потом переделал панель и она также при желании могла отдавать 8 вольт 300 миллиампер. Также была изготовлена небольшая панель из стеклодиодов. Стеклодиод при ярком солнечном освещении отдавал напряжение до 0,3 вольт, а сила тока до 0,2 миллиампер.

Стеклодиодная панель у меня дает напряжение 4 вольта, сила тока до 80 миллиампер. Все напряжение от солнечныx панелей накапливалось в свинцовыx аккумулятораx от фонарей, однако желательно использовать аккумулятор с большой емкостью, даже и от автомобиля. Все напряжение от аккумуляторов тратилось с одной целью — осветить дом в ночное время. Освещение выполнялось светодиодами.

Для этого из магазина были куплены светодиодные китайские фонарики. Затем были созданы светодиодные панельки.

На каждой панельке 42 светодиода. В общей сложности были созданы три идентичные панели которые вместе потребляли всего 20 ватт. Но освещенность равна 100 ваттной лампе накаливания и даже больше.

Свет, которые дают светодиоды, более приятный и успокаивающий. К тому же светодиоды имеют ничтожные тепловые потери.

Ну в прочем думаю все отлично знают, что светодиоды более эффективны. Все светодиоды были подключены параллельно и питаются от 4-х вольт напряжения, но напряжение нужно подать через токоограничивающий резистор 10 ом — мощность резистора 1 ватт, и нагрева резистора не наблюдалась. Ака.

Обсудить статью МОЩНАЯ САМОДЕЛЬНАЯ СОЛНЕЧНАЯ БАТАРЕЯ

источник

Здравствуйте. В продолжение темы об альтернативной энергетике (я уже делал обзоры и на солнечные панели: вот и вот, и на контроллеры заряда: вот и вот), предлагаю обзор 30 ваттной гибкой солнечной панели с выходным напряжением 12 вольт.
В обзоре фото панели, снятие нагрузочных характеристик в разных условиях, установка в автомобиль, а также видеообзор.
Заинтересовавшихся прошу…

Панель была упакована в картонную коробку, которая в свою очередь была обёрнута в 2 слоя вспененным полиэтиленом.Но, несмотря на это, коробка конечно же была деформирована во время доставки.

Панель представляет из себя кусок прозрачного пластика размером: 520х330х2 мм. Внутрь пластика помещены 36 обрезков солнечных элементов: 2 параллельно соединённые гирлянды по 18 последовательно включенных элементов в каждой. Панель слегка гнётся. На задней части расположена монтажная коробка, в которой параллельно выходным контактом батареи элементов подключен диод и кабель. Необходимость в диоде появляется только лишь в случае группового подключения панелей, чтобы при затенении одной панели, оказывалось минимальное влияние на выходные параметры группы панелей. В данном случае предполагается последовательное соединение панелей для увеличения итогового напряжения. Если необходимо соединить панели параллельно, то диод нужно переподключить последовательно с каждой панелью.

Солнечные батареи следует размещать в наиболее освещенном месте, таким образом, чтобы деревья и здания не затеняли их. Самым оптимальным местом является крыша здания или специальная опора, чуть хуже — стена.
Иногда солнечные панели устанавливают либо горизонтально, либо вертикально строго на юг (для северного полушария). Вертикальная установка чаще предпочтительнее горизонтальной. Естественно выработка электроэнергии в этих случаях не максимальная.
Чтобы увеличить эффективность, необходимо соблюдать угол наклона и азимут. Для жителей северного полушария оптимальный азимут — 180 градусов (строго на юг). Для южного полушария, естественно, наоборот. Долгота места установки не имеет значения. От широты зависит угол наклона, т.е. чем ближе к экватору, тем угол наклона меньше относительно горизонта, ну а чем ближе к полюсам, тем угол больше. Проще всего этот угол посчитать с помощью онлайн калькулятора. Для моего места жительства этот угол равен 44 градусам.

Тестирование производил в полдень в ясную погоду с освещённостью почти 90000 люкс. На мультиметре напряжение холостого хода панели: почти 21 вольт:
Первым делом панель была подключена непосредственно к автомобильному аккумулятору через амперметр, ток составил около 0,2 А
Далее панель установил под лобовым стеклом. Освещённость упала до 70000 люкс, а ток упал в 2 раза до 0,1 А.
Следующим шагом, я установил панель поверх установленной уже штатно 20 ваттной (обзор был, ссылка есть «в шапке»). И снял характеристику зависимости выходной мощности от тока нагрузки:Оказалось, что максимальная мощность панели составляет всего около 6,5 Вт.
Далее я приклеил панель на стеклопакет внутри комнаты липкой лентой и проделал тот же опыт:максимальная выходная мощность упала до 4 Вт.

Да, панель не оправдала надежд. Реальная выходная мощность оказалась ниже заявленной почти в 5 раз. Скорее всего это брак панели, хотя внешне я не смог обнаружить повреждений (трещин).
Одним словом: печалька.

Товар предоставлен для написания обзора магазином. Обзор опубликован в соответствии с п.18 Правил сайта.

источник